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B lood pressure (BP) readings in oscillometry are very 
sensitive to the posture of the body, arm, and body 
movements during the BP measurements, so mea-

suring conditions are the first important factors for trusted 
BP readings. Next is the BP estimation algorithm, which is 
responsible to convert the cuff deflation curve (CDC) pres-
sure signal to accurate BP readings. With proper measuring 
conditions and an accurate BP estimation algorithm one can 
expect trusted BP readings. Trustworthiness of the BP read-
ings is still a challenging issue in automated oscillometric BP 
monitors, and patients need to see the doctor for trusted mea-
surements. To this end, we have proposed a novel method 
called a Dynamic Threshold Algorithm (DTA) that evaluates 
trustworthiness of the BP readings immediately after the BP is 
estimated, such that the patient can decide whether to repeat 
the measurement or not. DTA employs the heart rate (HR) of 
the subject and determines a specific threshold (TR). TR is used 
to determine maximum and minimum limits for trustable 
pressures (SBP2, DBP2) of a given subject. The limits are called 
trusted boundaries (TB). Trusted boundaries are compared 
with the estimated systolic blood pressure (SBP) and diastolic 
blood pressure (DBP) to determine trustworthiness of the mea-
sured BP. BP readings are trusted if estimated SBP and DBP are 
inside the TB and untrusted or labeled an outlier if otherwise. 
In this research, DTA is applied on three different data- 
sets of healthy and sick subjects, outliers are determined and 
removed from the datasets, and remaining recordings are val-
idated against references and compared with validated results 
of original datasets. According to observations, improvements 
were significant after outliers were removed from the datasets. 

Introduction
Arterial blood pressure (BP) is an important vital sign that car-
ries significant information about the physiological state of a 

person [1] (Fig. 1). Systolic blood pressure (SBP) is the maxi-
mum blood pressure during heart contraction and ejection of 
the blood towards peripheral vessels. Diastolic blood pressure 
(DBP) is the minimum blood pressure exerted upon the wall of 
arteries while heart relaxes. The average BP over a cardiac cy-
cle is called mean arterial pressure (MAP). 

Blood pressure can be measured either invasively or non-
invasively. The most accurate method for measuring BP is the 
invasive method, which is widely used in intensive care units 
(ICU), in which a catheter is placed inside the artery for di-
rect BP measurement [2]. However, the requirement of highly 
trained staff and possibility of bleeding are two significant 
drawbacks. Alternatively, non-invasive methods to measure 
BP are much safer, easier to use, and do not require high ex-
pertise. Non-invasive methods measure BP indirectly using an 
external cuff and are commonly used in hospitals and home-
based monitoring systems (HBMS).

The auscultatory method is considered the gold standard 
among non-invasive BP measurements. This technique uti-
lizes a stethoscope, sphygmomanometer, and a cuff that is 
used to occlude and relieve arteries. The systolic and diastolic 
pressures are determined by a trained examiner listening to 
the so called Korotkoff sounds. SBP corresponds to the appear-
ance of the first sound after releasing the arterial blood flow, 
while DBP corresponds to the last sound before silence. The 
auscultatory method is very sensitive to noise and movements 
and requires trained examiners [3], [4]. 

Alternatively, there are automated monitoring devices that 
employ oscillometry to estimate BP. Oscillometry is the most 
popular non-invasive technique for automatic estimation of 
blood pressure as it can be relatively easily implemented in 
automated BP measurement devices [5]–[7]. The use of auto-
mated BP monitoring devices is growing fast since its use does 
not require much expertise and can be performed by patients 
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at home. Most of the oscillometric algorithms rely on empirical 
coefficients that are employed to evaluate systolic and dia-
stolic pressures, and since these coefficients may differ among 
the patients, the accuracy of the BP readings is affected, render-
ing the technique untrusted. Oscillometric waveform (OMW) 
is usually the only signal extracted in oscillometry [8] from the 
pressure in a cuff applied on subject’s arm or wrist and ana-
lyzed to estimate BP. Blood pressure characteristics vary over 
time and with emotional and environmental factors [9]. Oscil-
lometry can be performed by patients at home and can operate 
in noisy environments. In oscillometry, like in the ausculta-
tory method, an inflatable cuff is wrapped around the subject’s 
upper arm or wrist and is inflated to a supra-systolic blood 
pressure (SSBP). The cuff is then slowly deflated to a sub-dia-
stolic blood pressure (SDBP) while recording the cuff deflation 
curve (CDC) which is the pressure within the cuff. OMW con-
tains oscillometric pulses that are induced into the cuff by 
arterial BP pulses over the cuff deflation period. It is extracted 
from the recorded CDC and is used to estimate BP non-inva-
sively. Several techniques such as filtering and detrending are 
used to extract OMW from the CDC.

Oscillometric pulses are often corrupted by noise and arti-
facts caused by body movements, muscle contraction, posture 
of the body, and arm during the BP measurement [10]. In this 
research, these elements are used to define measuring condi-
tion factors. BP estimation algorithms convert OMW pulses 
to BP readings. Even with the most accurate estimation algo-
rithm, one cannot get accurate BP readings if it fails to consider 
proper measurement conditions. Both measuring conditions 
and accuracy of the BP estimation algorithm are important for 
trusted BP readings.

Trustworthiness of the BP measurements in oscillometry is 
the main challenging issue, especially when it comes to patients 
with cardiovascular diseases such as obesity, atrial fibrillation, 
and arrhythmia [11]. This limitation determines physicians’ lack 
of trust in the current oscillometric monitoring devices, and this 

is why patients are required 
to see their doctor regularly 
for trusted measurements. 

To this end, a Dynamic 
Thresho ld  Algor i thm 
(DTA) is proposed to de-
termine trustworthiness 
of the measured BP. A 
threshold (TR) is found 
by the algorithm, based 
on the heart rate of the pa-
tient, and is used to locate 
the oscillometric pulse at 
MAP (PULSEMAP) from 
the OMW. Pressure of the 
located pulse (MAP2) is 
estimated from averaging 
the cuff pressures at start-
ing and ending points of 
the PULSEMAP. Peak (pk) 

and trough (tr) of the PULSEMAP are used to determine upper 
and lower limits (SBP2, DBP2) for trustable SBP and DBP, re-
spectively. These limits are called trusted boundaries (TB). TB 
are used to evaluate trustworthiness of the estimated BP. The 
measured BP is considered trusted if both SBP and DBP are in-
side the TB. Otherwise, it is untrusted, which is considered an 
outlier in this research. The patients can repeat the measure-
ment until a trusted measurement alarm is observed or see the 
doctor if repeatedly untrusted measurements occur.

In this research, three different datasets of healthy and 
sick subjects with cardiovascular diseases are employed to 
test the DTA. The DTA is applied to the datasets, outliers are 
determined, and estimated pressures are validated against ref-
erences and compared before and after removing the outliers 
from the datasets. 

Oscillometric Measurement Methods
Two popular BP estimation algorithms, namely Maximum 
Amplitude Algorithm (MAA) and Maximum/Minimum 
Slope Algorithm (MMSA), are employed to estimate BP prior 
to application of the DTA.

A cuff is wrapped around the subject’s upper arm and air 
is pumped into the cuff bladder until the brachial artery is 
completely occluded. Cuff pressure at this point is equal to 
supra-systolic blood pressure (SSBP). Next, the cuff is slowly 
deflated with a constant deflation rate of approximately 4 
mmHg/sec to a minimum pressure equal to the sub-diastolic 
blood pressure (SDBP). A pressure transducer records the cuff 
pressure, as shown in Fig. 2. It is generally accepted that the 
information pertaining to SBP and DBP is embedded on this 
curve, and that is why CDC is the focus of all oscillometric es-
timation algorithms [12].

Oscillometric Waveform (OMW) Extraction
CDC is composed of slow-varying component determined by 
the deflating cuff pressure and pressure pulsations induced by 

Fig. 1. Blood pressure in large systemic arteries.
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the artery known as OMW pulses. The amplitude of the OMW 
pulses increases to a maximum and then decreases with fur-
ther cuff deflation. There are two main approaches to extract 
OMW from CDC, namely filtering [13] and detrending [14] 
methods.

The filtering method removes the frequency components 
belonging to the deflating cuff pressure and keeps everything 
else, including the frequency components of the OMW pulses. 
It is important to set the lower and upper cutoff frequencies 
to eliminate only the deflation pressure and keep the oscillat-
ing frequency components. Generally, lower cutoff frequency 
for high-pass or band-pass filters is set between 0.3 and 0.5 Hz, 
and upper cutoff frequency for band-pass filters is set around 
20 Hz to eliminate high frequency noise.

In the detrending method, a curve of best fit that represents 
the deflating cuff pressure is constructed and subtracted from the 
recorded CDC. Fitting the line requires locating the beginning of 
each oscillometric pulse on CDC. Points are then joined together 
to construct a line corresponding to decreasing CP. A plot of the 
OMW extracted by the detrending method is shown in Fig. 3.

Oscillometric Waveform Envelope (OMWE) 	  
Detection
Oscillometric waveform envelope (OMWE) is formed by sub-
tracting the trough of OMW pulses from corresponding peak 
pressures. Since the OMWE is usually corrupted by artifacts 
that generate erroneous peak values, the obtained OMWE is 
smoothed using a low-pass moving average filter. A sample 
OMWE is plotted as a function of time in Fig. 4. Both MAA and 
MMSA algorithms use OMWE to estimate BP.

Maximum Amplitude Algorithm (MAA)
MAA is the most popular estimation algorithm in oscillome-
try and approximates MAP as CP at a point when the OMWE 
attains a maximum and then linearly relates SBP and DBP to 
the MAP using two empirically derived ratios. These ratios 
serve to determine the time points at which the cuff pressure 
coincides with the SBP and DBP, respectively [13] (Fig. 5). It 
has been shown that the MAP may be estimated accurately by 
MAA [4] while, due to the sensitivity of the method to varia-
tions in BP waveform, pulse pressure and arterial compliance, 
the systolic and diastolic pressures cannot be precisely deter-
mined. Moreover, it has been observed that the ratios change 
as the parameters of the cardiovascular system vary between 
different health conditions, age, or populations [15]. Therefore, 
MAA is not reliable for accurate BP measurements, and coeffi-
cient-free algorithms are recommended as a solution.

Maximum / Minimum Slope Algorithm (MMSA)
MMSA estimates SBP and DBP from slopes of the OMWE. 
Drzewiecki has analyzed derivatives of the OMWE against the 
cuff pressure and found that the first derivative of the OMWE 
reaches a maximum corresponding to SBP and a minimum 
that corresponds to DBP [15]. In other words, SBP and DBP are 
equal to CP at which the first derivative of the OMWE becomes 
maximum and minimum, respectively (Fig. 6). The MMSA is Fig. 4. Obtained OMWE (green) and smoothed OMWE (blue).

Fig. 2. Sample CDC recorded by a pressure transducer embedded in the cuff 
system.

Fig. 3. Sample OMW extracted from the CDC using the detrending approach.
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coefficient-free but still very sensitive 
to noise such as motion artifacts.

Dynamic Threshold 
Algorithm (DTA) for 
Evaluating BP
As stated above, proper measuring 
conditions and an accurate estimation 
algorithm are required for trusted BP 
readings. Otherwise, measurements 
are untrusted and should be ignored 
by the examiners. The problem is that, 
in classic methods, the subjects have 
no input about the trustworthiness of 
the measured BP to accept or not the 
measurement results. The study in [16] 
suggests that a 3 to 4 mmHg increase in 
SBP translates into 20% higher stroke 
mortality and 12% higher mortality 
from ischemic heart diseases. There-
fore, even small errors in estimated 
BP could have large consequences on 
health condition of the patients [9], es-
pecially when it comes to patients with 
obesity, arterial stiffness, and atrial 
fibrillation [8]. To this end, DTA is proposed to evaluate trust-
worthiness of the measured BP. Therefore, patients will have 
the option to repeat the measurement if untrusted. 

To apply the DTA and evaluate trustworthiness of the es-
timated BP, the two popular algorithms of MAA and MMSA 
are employed to estimate BP. MAA and MMSA estimation 
algorithms are not the focus of this research but DTA that de-
termines untrusted measurements. To test DTA, estimated SBP 
and DBP are validated against references and compared with 
corresponding validated results after removing the outliers 
from all datasets.

DTA is based on the MAP equation in (1) that approxi-
mates MAP from SBP, DBP, and HR of the subject [17]. The 
MAP equation is defined as a function of HR, because any 
change in HR will change the time intervals of systolic and dia-
stolic phases at each cardiac cycle, and SBP, DBP, and MAP will 
change accordingly (Fig. 1).

	 	 (1)

In [18], the MAP was approximated from SBP and DBP 
without contribution of the HR. This approximation was used 
in [19] to determine a fixed threshold that equals 2 and develop 
our Ratio2 algorithm to evaluate the trustworthiness of the BP 
readings in oscillometric monitors. According to the observa-
tions from our recent research, where the Ratio2 algorithm was 
tested on more datasets with a broader variety of subjects that 
included sick patients with cardiovascular diseases, we could 
not observe the expected improvements in accuracy of the 
results. Therefore, the fixed threshold was replaced with a dy-
namic threshold based on HR of the subjects. 

The amplitude ratio of OMW pulses are calculated by di-
viding pk to |tr| of the pulse. A sample PULSEMAP is plotted 
against pulse number in Fig. 7.

In this research, the amplitude ratio of the PULSEMAP is ap-
proximated by TR in (2) and is used to locate PULSEMAP of a 
given subject.

	 	 (2)

TR is equal to 2 if one ignores the contribution of the HR 
in (2). Moreover, in the previous study, MAP was estimated 
from MAA and used as a reference to locate PULSEMAP, while 
in this research MAA is not used, and PULSEMAP is located as 
the pulse with closest amplitude ratio to TR. Especially when 
it comes to more trials and sick subjects, in some cases we ob-
served a false maximum in OMWE around the reference MAP 
(MAPref) that deviated the estimated MAP from its true posi-
tion, where MAPref is determined from SBP, DBP, and HR in 
(1). For example, in Fig. 8, the reference MAP (MAPref) is 124 
mmHg, while the estimated MAP by MAA is 97 mmHg. This 
false maximum accordingly resulted in a false MAP. The true 
maximum is where we could get the MAP equal to 120 mmHg, 
which is much closer to the corresponding reference MAP 
(MAPref). According to the observations, we could get closer 
to the true maximum by employing DTA and locating the 
PULSEMAP, and the true MAP is estimated by DTA as MAP2 
accordingly. Peak and trough amplitudes of PULSEMAP have 
an important role in DTA, so PULSEMAP should be located pre-
cisely. In conclusion, MAA has shown not to be always reliable 
for locating PULSEMAP, so the Ratio2 algorithm was extended 
to DTA from this point of view as well.

Fig. 5. Procedure of the maximum amplitude algorithm (MAA). Cuff deflation curve (up-blue) is shown as 
a sample BP recording; cuff pressure (up-red) is extracted using the detrending method. OMWE (down). CP 
at which the smoothed OMWE attains maximum is determined as MAP. CP at which the amplitude of the 
OMWE reaches the rs.OMWEmax is determined as SBP. CP at which the amplitude of the OMWE reaches the 
rd.OMWEmax is determined as DBP.
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PULSEMAP location is found by 
comparing the amplitude ratio of all 
oscillometric pulses with threshold TR. 
PULSEMAP is the pulse with the closest 
amplitude ratio to TR. Amplitude Ra-
tio of the oscillometric pulses at MAP 
for one recording is plotted against CP 
as illustrated in Fig. 9.

DTA is illustrated in Fig. 10. Start-
ing from the OMW extracted from the 
input CDC recording by utilizing the 
detrending method, the pressure of the 
located pulse is the closest pressure to 
MAP which is estimated by averaging 
the cuff pressures at starting (CPs) and 
ending (CPe) points of the PULSEMAP. 
The estimated MAP is called MAP2. 
HR is determined from the number of 
the oscillometric peaks per minute.

Peak (pk) and trough |tr| of the 
PULSEMAP are proportional to SBP and 
DBP with proportional constants s and 
d, respectively. Therefore, we replaced 
SBP and DBP in (1) with spk and d|tr| 
in (4), respectively. Moreover, the two 
constants are related by the constant k. 

	 	 (3)

We tested the DTA for all classes 
of values of k, i.e., smaller, greater or 
equal to 1, by detecting and removing 
the outliers and comparing the mean 
absolute error (MAE) and standard 
deviation of errors (STDE) of these validated results against 
references. The maximum improvement has been observed at 
k =1 for all datasets.

With  = s = d and replacing MAP in (1) with MAP2 of (4), 
we estimated the proportional constant  in (5). This propor-
tional constant is then used to estimate upper limit (SBP2) and 
lower limit (DBP2) in (6), (7) for trustable SBP and DBP respec-
tively. The estimated upper and lower limits are defined as 
trusted boundaries. 

	 	 (4)

	 	 (5)

	 	 (6)

	 	 (7)

Due to nonlinear properties of cardiovascular parameters 
at each heartbeat, such as heartbeat variability, vessel compli-
ance, and the measuring cuff system itself, we need to correct 
the estimated TB. To apply correction, the absolute distance of 

R2 from TR is estimated in (8) and applied to previously esti-
mated TB to determine corrected TB in (9), (10).

	 	 (8)

	 	 (9)

	 	 (10)

Experimental Results

To conduct the experiments and validate the results, three 
different datasets are employed and BP is estimated by 
MAA and MMSA algorithms. DTA was applied to the re-
sults and untrusted recordings were detected and removed 
as outliers. Mean absolute error (MAE) and standard devi-
ation of errors (STDE) from the references were estimated 
and compared with corresponding results before remov-
ing the outliers from datasets. Results are shown in Tables 
1 to 3. Moreover, one subject with an outlier is selected ran-
domly and analyzed to observe similar results over a single 
subject.

Fig. 6. Procedure of the maximum/minimum slope algorithm (MMSA). Cuff deflation curve (up-blue) is 
shown as a sample BP recording. Cuff pressure (up-red) is extracted using the detrending method. OMWE 
(middle). CP at which the smoothed OMWE attains maximum is determined as MAP. Cuff pressure at which 
the amplitude of the first derivative of the OMWE becomes maximum is determined as SBP. Cuff pressure at 
which the amplitude of the first derivative of the OMWE is minimum is determined as DBP.
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Dataset 1 (DS1)
DS1 is the first oscillometric waveform dataset acquired us-
ing an automated wrist BP monitor (UFIT TEN-10 by Biosign 
Technologies Inc.) in accord with the recommendations of 
the ANSI/AMMI/ISO standard [20]. The dataset includes 
85 healthy subjects, 48 males and 37 females, aged from 12 
to 80. Five sets of oscillometric wrist BP measurements were 
obtained from each subject, resulting in a total of 425 mea-
surements. A double stethoscope system was used to collect 
reference values by two trained observers. The average value 
of these two measurements was used as the reference pressure 
of each subject for the corresponding trial. 

Dataset 2 (DS2)
DS2 is composed of 150 simultaneous oscillometric BP and 
ECG that were acquired using the prototype designed in our 
research laboratory [21] and a Food and Drug Administration 
(FDA) - approved Omron monitor (HEM-790IT) for reference 

Fig. 7. Oscillometric pulse at MAP (PULSEMAP) for one sample recording 
which is the 17th pulse of the OMW. Peak (pk) and trough (|tr|) amplitudes are 
determined to calculate amplitude ratio (R2).

Fig. 8. Smoothed OMWE of a sample recording with false maximum 
estimated by MAA at CP=97 mmHg. Reference MAP is at CP=124 mmHg, 
so the true maximum should be at CP=120 mmHg which is much closer to 
reference MAP (MAPref).

Fig. 9. Amplitude ratio of oscillometric pulses at MAP for a sample recording, 

Fig. 10. Dynamic Threshold Algorithm (DTA). OMW is extracted from CDC by 
detrending method.
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measurements. This study was approved by the University of 
Ottawa Research Ethics Board, and written informed consent 
was obtained from all subjects. The dataset includes 10 healthy 
subjects, 6 males and 4 females, aged from 24 to 63. Five sets 
of oscillometric arm BP measurements were obtained in three 
days from each subject, resulting in a total of 150 measure-
ments. The subjects also wore a wristband on the right wrist 
for simultaneous ECG recording.

Dataset 3 (DS3)
DS3 is composed of 78 simultaneous oscillometric BP and ECG 
recordings from sick patients with various chronic conditions 

including atrial fibrillation, hypertension, and obesity. The 
dataset was acquired using Health Parametrics Inc. (HPI) pro-
totype (EABPM-01) using an arm cuff and a clinically standard 
arm BpTru monitor (BPM-100) for reference measurements. 
The dataset includes 13 sick subjects, 5 males and 8 females, 
aged from 46 to 85. Two dry flexible electrodes made of con-
ductive fabric inside the cuff along with a handle attached to 
the device were used for simultaneous ECG recording.

Trustworthiness Evaluation of Estimated BP
Accuracy of the BP estimators is not the focus of this research, 
as we are not proposing any BP estimation algorithm but 

Table 1 – Validated results and improvements for DS1 before and after removing the outliers over 1 and 85 
healthy subjects

DS1

Results from MAA Results from MMSA

Before (mmHg) After (mmHg) Improvements % Before (mmHg) After (mmHg) Improvements %

SBP DBP SBP DBP SBP DBP SBP DBP SBP DBP SBP DBP

One Subject

  MAE 9.32 2.61 7.84 2.52 15.93 3.54 19.43 7.79 12.63 3.96 35.01 49.09

  STDE 3.11 1.33 2.49 0.20 20.02 84.67 9.23 11.53 0.49 4.47 94.65 61.22

425 Recordings

  MAE 7.50 5.59 7.30 5.03 2.65 10.06 13.72 6.98 11.56 5.66 15.79 18.81

  STDE 6.80 4.84 5.39 4.62 20.76 4.49 10.22 6.32 7.18 4.87 29.74 22.94

Table 2 – Validated results and improvements for DS2 before and after removing the outliers over 1 and 10 
healthy subjects 

DS2

Results from MAA Results from MMSA

Before (mmHg) After (mmHg) Improvements % Before (mmHg) After (mmHg) Improvements %

SBP DBP SBP DBP SBP DBP SBP DBP SBP DBP SBP DBP

One Subject

  MAE 9.51 1.83 9.33 1.81 1.88 1.02 5.97 1.80 5.88 1.73 1.57 3.94

  STDE 2.25 0.93 2.07 0.77 7.90 17.25 2.75 0.86 2.32 0.78 15.60 9.35

150 Recordings

  MAE 5.66 3.35 5.45 3.31 3.76 1.16 6.17 4.59 6.11 3.67 0.93 20.14

  STDE 4.59 2.75 4.25 2.71 7.36 1.53 5.14 4.76 5.03 2.97 2.11 37.54

Table 3–Validated results and improvements for DS3 before and after removing the outliers over 1 and 13 
sick subjects 

DS3

Results from MAA Results from MMSA

Before (mmHg) After (mmHg) Improvements % Before (mmHg) After (mmHg) Improvements %

SBP DBP SBP DBP SBP DBP SBP DBP SBP DBP SBP DBP

One Subject

  MAE 10.78 14.11 9.17 13.43 14.91 4.85 8.23 5.31 6.31 3.32 23.30 37.50

  STDE 6.55 5.18 2.44 4.15 62.79 19.85 5.66 4.16 4.91 1.42 13.26 65.73

78 Recordings

  MAE 12.20 8.40 11.64 6.61 4.62 21.28 8.98 7.88 7.23 5.88 19.52 25.40

  STDE 8.36 5.22 7.54 4.22 9.84 19.08 8.92 5.26 6.27 4.87 29.70 7.47
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rather the DTA that determines the trustworthiness of the 
measured BP in oscillometric monitors. Improper measuring 
conditions and inaccurate BP estimation algorithms affect the 
trustworthiness of the BP readings. The objective of the exper-
iments is to validate the estimated BP against corresponding 
references before and after removing the outliers from the da-
tasets and to compare the results to observe improvements in 
accuracy of the results. To this end, DTA was applied to the 
estimated BP, outliers were detected and removed from the da-
tasets, and results were validated against references for each 
dataset, and compared with validated results before remov-
ing the outliers.

The DS1 oscillometric recording device returns two wave-
forms: the deflating cuff pressure (CP) and the discrete 
derivative of the CDC which we used to extract the OMW. 
CDC was retrieved by integrating the derivative of the input 
recorded CDC, and a detrending method was employed to 
extract OMW by subtracting recorded CP samples from cor-
responding CDC samples. OMWE was formed by subtracting 
the peak of each oscillometric pulse from the corresponding 
trough sample.

	 	 (11)

	 	 (12)

Two MAA and MMSA estimation algorithms were em-
ployed to estimate BP from OMWE. BP was estimated in terms 
of the SBP and DBP for each estimation algorithm over 425 re-
cordings. Results were validated against nurse references, and 
absolute differences from references (MAE) were estimated 
along with the standard deviation of the differences (STDE) 
for all subjects. Next, DTA was applied, upper and lower lim-
its (SBP2, DBP2) of trusted boundaries were determined for 
each recording, and the results were compared with the pres-
sures SBP and DBP estimated by the two MAA and MMSA 
algorithms. Estimated pressures were considered trusted if in-
side the trusted boundaries. Otherwise, they were considered 
as outliers and were removed from the dataset. For MAA, 129 
and 49 outliers were found in terms of SBP and DBP, respec-
tively, while it was 213 and 75 for the MMSA algorithm. The 
remaining dataset was validated against nurse references, and 
MAE and STDE were estimated again and compared with the 
corresponding values before removing the outliers. Validated 
results and improvements for DS1 are shown in Table 1.

For more confidence in the results and level of improve-
ments, DTA was tested on another healthy dataset (DS2). The 
whole procedure was the same as for DS1, except OMW was 
obtained from the recorded CDC using a 2nd order band-pass 
digital Butterworth filter with the lower cutoff frequency of 0.5 
Hz and upper cutoff frequency of 20 Hz. For MAA, 6 and 0 out-
liers were found in terms of SBP and DBP, respectively, while 
it was 4 and 9 for MMSA algorithm. Validated results and im-
provements for DS2 are shown in Table 2.

To investigate the performance of the DTA on sick subjects, 
DS3 was acquired from 78 patients with chronic conditions 

such as hypertension, obesity, and atrial fibrillation. The 
whole procedure was the same as DS2 with the same filter-
ing approach to obtain OMW from the CDC. For MAA, 38 and 
0 outliers were found in terms of SBP and DBP, respectively, 
while it was 27 and 0 for MMSA algorithm. Validated results 
and improvements for DS3 are shown in Table 3.

Uncertainty Analysis of DTA
Uncertainty can be evaluated statistically to provide a confi-
dence interval (CI). Confidence interval is defined as a “margin 
within which the ‘true value’ being measured can be said to 
lie, with a given level of confidence” [22]. Level of confidence 
expresses the degree of confidence in the result. Standard un-
certainty u(x) is obtained from square root of variance of the 
measurements for measurand ‘x’. To find the CI, a coverage 
factor (K) is required to be multiplied by u(x) and provide ex-
panded uncertainty U. The coverage factor depends on the 
probability density function of the measurand. For example, 
let the measurand distribute according to a normal distribution 
about mean value  over n samples. The standard uncertainty 
u(x) is given by standard deviation  of this distribution. If K=1, 
then  at a level of confidence of 68.3%. If K=2, then 

 at a level of confidence of 95%. Similarly, if K=3, then 
 at a level of confidence of 99.7% [23]. 

	 	 (13)

	 	 (14)

	 	 (15)

To show how DTA improves uncertainty of the measure-
ments, we estimated uncertainty of the measurements before 
and after applying the DTA and compared them to estimate 
the level of the improvements in uncertainty. Improvements 
are shown in Table 4.

Conclusion
Non-invasive blood pressure oscillometric monitors are a 
popular alternative for the auscultatory method which is still 
considered as the golden standard and widely used in HBMS. 
Although current oscillometric monitors have successfully ful-
filled the validation protocols developed by the International 
Organization for Standardization, the American Association 

Table 4 – Improvements of uncertainty caused by 
DTA for both estimation algorithms

All Subjects

MAA MMSA 

Improvements % Improvements %

SBP DBP SBP DBP

Uncertainty (U)

  DS1 (425) 5.05 1.06 0.52 15.09

  DS2 (150) 5.45 1.53 0.77 35.58

  DS3 (78) 4.82 19.08 13.06 7.47
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for the Advancement of Medical Instrumentation [24], or the 
British Hypertension Society [25], they fail to provide trustable 
BP measurements in some cases [26]. Even with the most accu-
rate oscillometric monitors one can get different BP readings if 
BP is measured repeatedly. The most frequent reasons are the 
measuring conditions of the patients, nonlinear properties of 
the cardiovascular system such as vessel compliance, nonlin-
ear behavior of the cuff system especially the cuff itself, motion 
artifacts, and environmental noise. As a result, patients do not 
know how to trust different BP readings. To this end, DTA is 
proposed to provide information about trustworthiness of the 
measured BP, so patients have the option whether to repeat the 
measurement or not. DTA estimates upper and lower limits 
for estimated SBP and DBP, respectively as trusted boundaries 
and compares the estimated BP with determined boundaries. 
Measured BP is trustable if both SBP and DBP are inside the 
trusted boundaries. Otherwise, the measurement is untrusted 
and patient should ignore the measurement. In this research, 
a new algorithm (DTA) was applied on three different data- 
sets composed of healthy and sick subjects with cardiovascu-
lar conditions, and untrusted recordings called outliers were 
detected and removed from the datasets. Results were vali-
dated against references before and after removing the outliers 
and compared to determine the level of improvements at-
tained by DTA. 

According to the results listed in Tables 1–3, we observed 
up to 15.93%, 3.54% improvements in MAE with 20.02%, 
84.67% improvements in STDE for SBP and DBP estimated by 
MAA, respectively, for healthy subjects. Similarly, improve-
ments were up to 35.01%, 49.09% in MAE with 94.65%, 61.22% 
in STDE for SBP and DBP estimated by MMSA, respectively, 
for the healthy subjects. 

Also, we observed up to 14.91%, 4.85% improvements in 
MAE with 62.79%, 19.85% improvements in STDE for SBP 
and DBP estimated by MAA, respectively, for the sick sub-
jects. Similarly, improvements were up to 23.30%, 37.50% in 
MAE with 13.26%, 65.73% in STDE for SBP and DBP estimated 
by MMSA, respectively, for the sick subjects. Moreover, DTA 
could reduce uncertainty of the measurements up to 13.06%, 
35.58% for SBP and DBP, respectively.
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